3.88 \(\int \frac {\cos (c+d x)}{(a+a \cos (c+d x))^5} \, dx\)

Optimal. Leaf size=143 \[ \frac {2 \sin (c+d x)}{63 d \left (a^5 \cos (c+d x)+a^5\right )}+\frac {2 \sin (c+d x)}{63 a d \left (a^2 \cos (c+d x)+a^2\right )^2}+\frac {\sin (c+d x)}{21 a^2 d (a \cos (c+d x)+a)^3}+\frac {5 \sin (c+d x)}{63 a d (a \cos (c+d x)+a)^4}-\frac {\sin (c+d x)}{9 d (a \cos (c+d x)+a)^5} \]

[Out]

-1/9*sin(d*x+c)/d/(a+a*cos(d*x+c))^5+5/63*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^4+1/21*sin(d*x+c)/a^2/d/(a+a*cos(d*x
+c))^3+2/63*sin(d*x+c)/a/d/(a^2+a^2*cos(d*x+c))^2+2/63*sin(d*x+c)/d/(a^5+a^5*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {2750, 2650, 2648} \[ \frac {2 \sin (c+d x)}{63 d \left (a^5 \cos (c+d x)+a^5\right )}+\frac {2 \sin (c+d x)}{63 a d \left (a^2 \cos (c+d x)+a^2\right )^2}+\frac {\sin (c+d x)}{21 a^2 d (a \cos (c+d x)+a)^3}+\frac {5 \sin (c+d x)}{63 a d (a \cos (c+d x)+a)^4}-\frac {\sin (c+d x)}{9 d (a \cos (c+d x)+a)^5} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + a*Cos[c + d*x])^5,x]

[Out]

-Sin[c + d*x]/(9*d*(a + a*Cos[c + d*x])^5) + (5*Sin[c + d*x])/(63*a*d*(a + a*Cos[c + d*x])^4) + Sin[c + d*x]/(
21*a^2*d*(a + a*Cos[c + d*x])^3) + (2*Sin[c + d*x])/(63*a*d*(a^2 + a^2*Cos[c + d*x])^2) + (2*Sin[c + d*x])/(63
*d*(a^5 + a^5*Cos[c + d*x]))

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2750

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x)}{(a+a \cos (c+d x))^5} \, dx &=-\frac {\sin (c+d x)}{9 d (a+a \cos (c+d x))^5}+\frac {5 \int \frac {1}{(a+a \cos (c+d x))^4} \, dx}{9 a}\\ &=-\frac {\sin (c+d x)}{9 d (a+a \cos (c+d x))^5}+\frac {5 \sin (c+d x)}{63 a d (a+a \cos (c+d x))^4}+\frac {5 \int \frac {1}{(a+a \cos (c+d x))^3} \, dx}{21 a^2}\\ &=-\frac {\sin (c+d x)}{9 d (a+a \cos (c+d x))^5}+\frac {5 \sin (c+d x)}{63 a d (a+a \cos (c+d x))^4}+\frac {\sin (c+d x)}{21 a^2 d (a+a \cos (c+d x))^3}+\frac {2 \int \frac {1}{(a+a \cos (c+d x))^2} \, dx}{21 a^3}\\ &=-\frac {\sin (c+d x)}{9 d (a+a \cos (c+d x))^5}+\frac {5 \sin (c+d x)}{63 a d (a+a \cos (c+d x))^4}+\frac {\sin (c+d x)}{21 a^2 d (a+a \cos (c+d x))^3}+\frac {2 \sin (c+d x)}{63 a^3 d (a+a \cos (c+d x))^2}+\frac {2 \int \frac {1}{a+a \cos (c+d x)} \, dx}{63 a^4}\\ &=-\frac {\sin (c+d x)}{9 d (a+a \cos (c+d x))^5}+\frac {5 \sin (c+d x)}{63 a d (a+a \cos (c+d x))^4}+\frac {\sin (c+d x)}{21 a^2 d (a+a \cos (c+d x))^3}+\frac {2 \sin (c+d x)}{63 a^3 d (a+a \cos (c+d x))^2}+\frac {2 \sin (c+d x)}{63 d \left (a^5+a^5 \cos (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 97, normalized size = 0.68 \[ \frac {\sec \left (\frac {c}{2}\right ) \left (-63 \sin \left (c+\frac {d x}{2}\right )+84 \sin \left (c+\frac {3 d x}{2}\right )+36 \sin \left (2 c+\frac {5 d x}{2}\right )+9 \sin \left (3 c+\frac {7 d x}{2}\right )+\sin \left (4 c+\frac {9 d x}{2}\right )+63 \sin \left (\frac {d x}{2}\right )\right ) \sec ^9\left (\frac {1}{2} (c+d x)\right )}{8064 a^5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a + a*Cos[c + d*x])^5,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^9*(63*Sin[(d*x)/2] - 63*Sin[c + (d*x)/2] + 84*Sin[c + (3*d*x)/2] + 36*Sin[2*c + (5*
d*x)/2] + 9*Sin[3*c + (7*d*x)/2] + Sin[4*c + (9*d*x)/2]))/(8064*a^5*d)

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 123, normalized size = 0.86 \[ \frac {{\left (2 \, \cos \left (d x + c\right )^{4} + 10 \, \cos \left (d x + c\right )^{3} + 21 \, \cos \left (d x + c\right )^{2} + 25 \, \cos \left (d x + c\right ) + 5\right )} \sin \left (d x + c\right )}{63 \, {\left (a^{5} d \cos \left (d x + c\right )^{5} + 5 \, a^{5} d \cos \left (d x + c\right )^{4} + 10 \, a^{5} d \cos \left (d x + c\right )^{3} + 10 \, a^{5} d \cos \left (d x + c\right )^{2} + 5 \, a^{5} d \cos \left (d x + c\right ) + a^{5} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^5,x, algorithm="fricas")

[Out]

1/63*(2*cos(d*x + c)^4 + 10*cos(d*x + c)^3 + 21*cos(d*x + c)^2 + 25*cos(d*x + c) + 5)*sin(d*x + c)/(a^5*d*cos(
d*x + c)^5 + 5*a^5*d*cos(d*x + c)^4 + 10*a^5*d*cos(d*x + c)^3 + 10*a^5*d*cos(d*x + c)^2 + 5*a^5*d*cos(d*x + c)
 + a^5*d)

________________________________________________________________________________________

giac [A]  time = 0.57, size = 59, normalized size = 0.41 \[ -\frac {7 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 18 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 42 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 63 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{1008 \, a^{5} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^5,x, algorithm="giac")

[Out]

-1/1008*(7*tan(1/2*d*x + 1/2*c)^9 + 18*tan(1/2*d*x + 1/2*c)^7 - 42*tan(1/2*d*x + 1/2*c)^3 - 63*tan(1/2*d*x + 1
/2*c))/(a^5*d)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 58, normalized size = 0.41 \[ \frac {-\frac {\left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{9}-\frac {2 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{16 d \,a^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+a*cos(d*x+c))^5,x)

[Out]

1/16/d/a^5*(-1/9*tan(1/2*d*x+1/2*c)^9-2/7*tan(1/2*d*x+1/2*c)^7+2/3*tan(1/2*d*x+1/2*c)^3+tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [A]  time = 0.97, size = 87, normalized size = 0.61 \[ \frac {\frac {63 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {42 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {18 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {7 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}}{1008 \, a^{5} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))^5,x, algorithm="maxima")

[Out]

1/1008*(63*sin(d*x + c)/(cos(d*x + c) + 1) + 42*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 18*sin(d*x + c)^7/(cos(d
*x + c) + 1)^7 - 7*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)/(a^5*d)

________________________________________________________________________________________

mupad [B]  time = 0.40, size = 58, normalized size = 0.41 \[ \frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (-7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-18\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+42\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+63\right )}{1008\,a^5\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)/(a + a*cos(c + d*x))^5,x)

[Out]

(tan(c/2 + (d*x)/2)*(42*tan(c/2 + (d*x)/2)^2 - 18*tan(c/2 + (d*x)/2)^6 - 7*tan(c/2 + (d*x)/2)^8 + 63))/(1008*a
^5*d)

________________________________________________________________________________________

sympy [A]  time = 9.18, size = 85, normalized size = 0.59 \[ \begin {cases} - \frac {\tan ^{9}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{144 a^{5} d} - \frac {\tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{56 a^{5} d} + \frac {\tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{24 a^{5} d} + \frac {\tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{16 a^{5} d} & \text {for}\: d \neq 0 \\\frac {x \cos {\relax (c )}}{\left (a \cos {\relax (c )} + a\right )^{5}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+a*cos(d*x+c))**5,x)

[Out]

Piecewise((-tan(c/2 + d*x/2)**9/(144*a**5*d) - tan(c/2 + d*x/2)**7/(56*a**5*d) + tan(c/2 + d*x/2)**3/(24*a**5*
d) + tan(c/2 + d*x/2)/(16*a**5*d), Ne(d, 0)), (x*cos(c)/(a*cos(c) + a)**5, True))

________________________________________________________________________________________